Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Straining nanomembranes via highly mismatched heteroepitaxial growth: InAs islands on compliant Si substrates.

Identifieur interne : 000A49 ( Main/Exploration ); précédent : 000A48; suivant : 000A50

Straining nanomembranes via highly mismatched heteroepitaxial growth: InAs islands on compliant Si substrates.

Auteurs : RBID : pubmed:23046451

English descriptors

Abstract

Freestanding, edge-supported silicon nanomembranes are defined by selective underetching of patterned silicon-on-insulator substrates. The membranes are afterward introduced into a molecular beam epitaxy chamber and overgrown with InAs, resulting in the formation of InAs islands on flat areas and at the top of the Si nanomembranes. A detailed analysis of sample morphology, island structure, and strain is carried out. Scanning electron microscopy shows that the membrane stays intact during overgrowth. Atomic force microscopy reveals a lower island density on top of the freestanding membranes, denoting a modified wetting or diffusivity in these areas. An observed bending of the membrane indicates a strain transfer from the InAs islands to the compliant substrate. X-ray diffraction and finite-element modeling indicate a nonuniform strain state of the island ensemble grown on the freestanding membrane. A simulation of the bending of the nanomembranes indicates that the islands at the center of the freestanding area are highly strained, whereas islands on the border tend to be fully relaxed. Finally, continuum elasticity calculations suggest that for a sufficiently thin membrane InAs could transfer enough strain to the membrane to allow coherent epitaxial growth, something not possible on bulk substrates.

DOI: 10.1021/nn304151j
PubMed: 23046451

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Straining nanomembranes via highly mismatched heteroepitaxial growth: InAs islands on compliant Si substrates.</title>
<author>
<name sortKey="Deneke, Christoph" uniqKey="Deneke C">Christoph Deneke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratório Nacional de Nanotecnologia (LNNano), Rua Giuseppe Máximo Scolfaro 10000, 13083-100 Campinas, SP, Brazil. christoph.deneke@lnls.br</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Laboratório Nacional de Nanotecnologia (LNNano), Rua Giuseppe Máximo Scolfaro 10000, 13083-100 Campinas, SP</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Malachias, Angelo" uniqKey="Malachias A">Angelo Malachias</name>
</author>
<author>
<name sortKey="Rastelli, Armando" uniqKey="Rastelli A">Armando Rastelli</name>
</author>
<author>
<name sortKey="Merces, Leandro" uniqKey="Merces L">Leandro Merces</name>
</author>
<author>
<name sortKey="Huang, Minghuang" uniqKey="Huang M">Minghuang Huang</name>
</author>
<author>
<name sortKey="Cavallo, Francesca" uniqKey="Cavallo F">Francesca Cavallo</name>
</author>
<author>
<name sortKey="Schmidt, Oliver G" uniqKey="Schmidt O">Oliver G Schmidt</name>
</author>
<author>
<name sortKey="Lagally, Max G" uniqKey="Lagally M">Max G Lagally</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="doi">10.1021/nn304151j</idno>
<idno type="RBID">pubmed:23046451</idno>
<idno type="pmid">23046451</idno>
<idno type="wicri:Area/Main/Corpus">000997</idno>
<idno type="wicri:Area/Main/Curation">000997</idno>
<idno type="wicri:Area/Main/Exploration">000A49</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenicals (chemistry)</term>
<term>Computer Simulation</term>
<term>Elastic Modulus</term>
<term>Indium (chemistry)</term>
<term>Materials Testing</term>
<term>Membranes, Artificial</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Nanostructures (chemistry)</term>
<term>Nanostructures (ultrastructure)</term>
<term>Silicon (chemistry)</term>
<term>Tensile Strength</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arsenicals</term>
<term>Indium</term>
<term>Silicon</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Elastic Modulus</term>
<term>Materials Testing</term>
<term>Membranes, Artificial</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Tensile Strength</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Freestanding, edge-supported silicon nanomembranes are defined by selective underetching of patterned silicon-on-insulator substrates. The membranes are afterward introduced into a molecular beam epitaxy chamber and overgrown with InAs, resulting in the formation of InAs islands on flat areas and at the top of the Si nanomembranes. A detailed analysis of sample morphology, island structure, and strain is carried out. Scanning electron microscopy shows that the membrane stays intact during overgrowth. Atomic force microscopy reveals a lower island density on top of the freestanding membranes, denoting a modified wetting or diffusivity in these areas. An observed bending of the membrane indicates a strain transfer from the InAs islands to the compliant substrate. X-ray diffraction and finite-element modeling indicate a nonuniform strain state of the island ensemble grown on the freestanding membrane. A simulation of the bending of the nanomembranes indicates that the islands at the center of the freestanding area are highly strained, whereas islands on the border tend to be fully relaxed. Finally, continuum elasticity calculations suggest that for a sufficiently thin membrane InAs could transfer enough strain to the membrane to allow coherent epitaxial growth, something not possible on bulk substrates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23046451</PMID>
<DateCreated>
<Year>2012</Year>
<Month>11</Month>
<Day>27</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1936-086X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>ACS nano</Title>
<ISOAbbreviation>ACS Nano</ISOAbbreviation>
</Journal>
<ArticleTitle>Straining nanomembranes via highly mismatched heteroepitaxial growth: InAs islands on compliant Si substrates.</ArticleTitle>
<Pagination>
<MedlinePgn>10287-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/nn304151j</ELocationID>
<Abstract>
<AbstractText>Freestanding, edge-supported silicon nanomembranes are defined by selective underetching of patterned silicon-on-insulator substrates. The membranes are afterward introduced into a molecular beam epitaxy chamber and overgrown with InAs, resulting in the formation of InAs islands on flat areas and at the top of the Si nanomembranes. A detailed analysis of sample morphology, island structure, and strain is carried out. Scanning electron microscopy shows that the membrane stays intact during overgrowth. Atomic force microscopy reveals a lower island density on top of the freestanding membranes, denoting a modified wetting or diffusivity in these areas. An observed bending of the membrane indicates a strain transfer from the InAs islands to the compliant substrate. X-ray diffraction and finite-element modeling indicate a nonuniform strain state of the island ensemble grown on the freestanding membrane. A simulation of the bending of the nanomembranes indicates that the islands at the center of the freestanding area are highly strained, whereas islands on the border tend to be fully relaxed. Finally, continuum elasticity calculations suggest that for a sufficiently thin membrane InAs could transfer enough strain to the membrane to allow coherent epitaxial growth, something not possible on bulk substrates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deneke</LastName>
<ForeName>Christoph</ForeName>
<Initials>C</Initials>
<Affiliation>Laboratório Nacional de Nanotecnologia (LNNano), Rua Giuseppe Máximo Scolfaro 10000, 13083-100 Campinas, SP, Brazil. christoph.deneke@lnls.br</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Malachias</LastName>
<ForeName>Angelo</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rastelli</LastName>
<ForeName>Armando</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Merces</LastName>
<ForeName>Leandro</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Minghuang</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cavallo</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Oliver G</ForeName>
<Initials>OG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lagally</LastName>
<ForeName>Max G</ForeName>
<Initials>MG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType>Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Nano</MedlineTA>
<NlmUniqueID>101313589</NlmUniqueID>
<ISSNLinking>1936-0851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Arsenicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Membranes, Artificial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1303-11-3</RegistryNumber>
<NameOfSubstance>indium arsenide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z4152N8IUI</RegistryNumber>
<NameOfSubstance>Silicon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Arsenicals</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Elastic Modulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Membranes, Artificial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Silicon</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tensile Strength</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/nn304151j</ArticleId>
<ArticleId IdType="pubmed">23046451</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23046451
   |texte=   Straining nanomembranes via highly mismatched heteroepitaxial growth: InAs islands on compliant Si substrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23046451" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024